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ABSTRACT: We have previously demonstrated that DCB-3503, a tylophorine analogue, has an anti-inflammatory property in
murine models for autoimmune diseases. However, its mechanism remains unknown. Here, we have synthesized 34 derivatives of
DCB-3503 and investigated their effects on T cells differentiation and TNF-α production. Six derivatives (4, 9, 13, 19, 31, and
32) could significantly promote the expression of Foxp3. Among these, the IC50 of 31 and 32 was about 500 μM. Eight analogues
(1, 2, 4, 9, 12, 18, 19, and 21) showed anti-TNF-α effect in Raw 264.7 cells and murine splenocytes, of which 18 and 19 were
most significant. Moreover, 31 and 18 showed a better activity and cell survival ratio when compared with DCB-3503 at various
concentrations. In summary, we have demonstrated the anti-inflammatory characteristics of 34 novel tylophorine derivatives and
discussed their structure−activity relationship in order to explore their therapeutic potentials for inflammatory diseases.
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Tylophorines are isolated from the roots of Tylophora
atrofolliculata, which has been used as a traditional chinese

medicine for the treatment of allergic and inflammatory
diseases. Among several tylophorine analogs, DCB-3503 has a
wide range of pharmacological activities as an antitumor,1−5

anti-inflammatory, and antiautoimmune disease agent in
murine models.6−8 Recently, DCB-3503 has been shown to
inhibit nuclear factor-kappa B-mediated transcription in
vitro.9,10 Thus, it can be potentially used for treating
inflammatory diseases. However, the role of DCB-3503 in
regulatory T cells (Tregs) differentiation or production of
inflammatory cytokines still remains unknown.
Peripheral tolerance is controlled and maintained by a subset

of Tregs. Failure of such tolerance can lead to many
autoimmune diseases.11 Forkhead box P3 (Foxp3) is the key

transcription factor that determines the differentiation and
function of Tregs.12 Besides thymus-derived naturally occurring
Tregs (nTregs), naiv̈e T cells can be induced to express Foxp3
upon T-cell receptor (TCR) stimulation in the presence of
transforming growth factor-beta (TGF-β), and these inducible
T regulatory cells (iTregs) exert similar suppressive functions as
nTregs.13 Tumor necrosis factor-alpha (TNF-α) is a pleiotropic
inflammatory cytokine that plays a central role in acute and
chronic inflammatory diseases, such as rheumatoid arthritis
(RA), Crohn’s disease, and bacterial septic shock.14−16

Blockade of the effect of this cytokine by anti-TNF-α antibody

Received: June 3, 2014
Accepted: July 23, 2014
Published: July 23, 2014

Letter

pubs.acs.org/acsmedchemlett

© 2014 American Chemical Society 1027 dx.doi.org/10.1021/ml500255j | ACS Med. Chem. Lett. 2014, 5, 1027−1031

pubs.acs.org/acsmedchemlett


or a fusion of two soluble TNF receptors with a human
immunoglobulin molecule has been used for the treatment of
RA and inflammatory bowel disease.17−21 Treg cells dysfunc-
tion and TNF-α production represent two major therapeutic
targets during the progress of autoimmune diseases. Therefore,
to search for small molecules that can modulate expression of
Foxp3 or suppress production of TNF-α may provide a strategy
for the treatment of autoimmune diseases.
In this study, we have synthesized 34 novel DCB-3503

derivatives and analyzed their activity for the induction of
Foxp3 expression within cultured T cells and inhibition of
TNF-α production by murine splenocytes as well as Raw cells
upon lipopolysaccharide (LPS) activation. Our results revealed
that 4 (DCB-3503), 9, 13, 19, and two of C9-substituted
phenanthrene-based tylophorine derivatives (PBTs) 31 and 32
can significantly promote Foxp3 expression in vitro. Eight
analogues (1, 2, 4, 9, 12, 18, 19, and 21) can significant inhibit
toward TNF-α in Raw 264.7 cells and primary murine
splenocytes. Biological results revealed that the structure of
PBTs is crucial for the differentiation of Tregs and that salt
derivatives of tylophorine may sustain inhibition of TNF-α by
improving the water solubility of DCB-3503. Moreover, the
activity and cytotoxicity of compounds 31 and 18 were analyzed
in comparison with DCB-3503 at various concentrations, and
the results suggested that they may be superior to DCB-3503 in
terms of therapeutic usage.
Structures of tested tylophorine derivatives are shown in

Figure 1. Synthesis of 1,22 2−3,23 4−7,24 the salt derivatives of
(±)-tylophorine 8−23,23 and C9-substituted phenanthrene-
based tylophorine derivatives (PBTs) 24−31, 33, and 3425 were
accomplished with procedures described in the literature.

Oxidation of alcohol 35 with pyri-dinium chlorochromate
gave rise to aldehyde 36, which was coupled with methyl 6-
aminohexanoate hydro-chloride to generate compound 32
(Scheme 1).

Compounds 4, 9, 13, 19, 31, and 32 Significantly
Promote Foxp3 Expression. To evaluate the effect of these
tylophorine derivatives on the induction of Foxp3, Foxp3-green
fluorescent protein (GFP) reporter mice (in which the GFP
level can predict the expression of Foxp3 mRNA)26 were used
to detect Foxp3 expression via acquisition of GFP+ cells. For
compounds 1−3, (±)-tylophorine (1) and S-(+)-tylophorine
(2) showed inhibitory effects on Foxp3 expression, whereas R-
(−)-tylophorine (3) showed a slightly promoting effect. All 14-
hydroxy tylophorine analogues (4−7) promoted Foxp3
expression, and 4 (DCB-3503) showed a better activity
(39%) than its isomers (5−7). For the salt derivatives of
(±)-tylophorine (8−23), various effects on Foxp3 expression
were observed, of which hydrobromide (9), picrate (13), and
succinate (19) significantly promoted Foxp3 expression (40%,
47%, and 48%, respectively). All PBTs (24−34) could enhance
the Foxp3 expression except for 25 and 26, among which 31
and 32 were more significant (41% and 47%, respectively).
Results of all derivatives are listed in Table 1. A representative
FACS dot plot of three independent experiments is shown in
Figure S1, Supporting Information.

Eleven Compounds Have Suppressed TNF-α Produc-
tion in Raw 264.7 Cells. To analyze the anti-inflammatory
effects of all synthesized compounds, Raw 264.7 cells (murine
macrophage cell line) stimulated by LPS were used in a TNF-α
detection assay. For compounds 1−3, (±)-tylophorine (1)
(half-maximal inhibitory concentration (IC50) = 125 nM) and
S-(+)-tylophorine (2) (78 nM) showed greater inhibitory
effects compared with R-(−)-tylophorine (3) (430 nM).Figure 1. Chemical structures of tylophorine derivatives 1−34.

Scheme 1. Synthesis of Compound 32

Table 1. Foxp3 Promoting Activity of Compounds 1−34a

increased percentage of iTregs marked by Foxp3 (%)

compd 100 nM compd 100 nM compd 1 μM

1 −34 ± 4 13 47 ± 8 24 2 ± 3
2 −44 ± 2 14 0.8 ± 4 25 0.2 ± 2
3 4 ± 6 15 32 ± 5 26 0.7 ± 3
4 39 ± 9 16 −4 ± 11 27 5 ± 2
5 29 ± 8 17 0.1 ± 4 28 5 ± 2
6 12 ± 5 18 4 ± 2 29 7 ± 2
7 5 ± 2 19 48 ± 9 30 7 ± 2
8 9 ± 1 20 −5 ± 1 31 41 ± 1
9 40 ± 12 21 7 ± 3 32 47 ± 2
10 −12 ± 8 22 −3 ± 1 33 16 ± 5
11 −1 ± 2 23 29 ± 6 34 19 ± 3
12 −2 ± 6

aValues are the mean ± SD of at least three independent experiments
carried out in duplicate. Bold values denote compounds with >35%
increase of iTregs marked by Foxp3.
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Among 14-hydroxytylophorine analogues (4−7), compounds 4
(IC50 = 36 nM) and 6 (238 nM) showed greater inhibition than
their isomers. For salt derivatives (±)-tylophorine (8−23),
compounds 8, 9, 12, 16, 17, 18, 19, and 21 showed significantly
inhibitory effects (IC50 values = 52, 93, 27, 56, 61, 33, 56, and
100 nM, respectively). However, PBTs 24−34 only weakly
inhibited TNF-α expression. Thus, 1, 2, 8, 9, 12, 16, 17, 18, 19,
and 21 had comparable inhibitory effects as that of 4 (DCB-
3503). Most of these compounds were salt derivatives,
suggesting that the structure of salt derivatives can maintain
the inhibitory effects by improving water solubility. Activity
data for tylophorine derivatives are shown in Table 2.

Eight Compounds Inhibited TNF-α Expression in
Primary Murine Splenocytes. To further evaluate the effects
of these compounds on LPS-triggered TNF-α production,
splenocytes from BALB/c mice were cultured with LPS (100
ng/mL) in the presence of these compounds for 4 and 24 h,
and the amounts of TNF-α in the supernatants were measured
by ELISA.
(±)-Tylophorine (1), S-(+)-tylophorine (2), and the salt

derivatives of (±)-tylophorine 9, 10, 12, and 21 showed

significant inhibition (IC50 values (in nM) = 35, 55, 118, 100,
30, and 76, respectively) at 4 h but not at 24 h (Table 2).
However, (±)- tylophorine malate (18) and (±)-tylophorine
succinate (19) exhibited long-term inhibitory effects on TNF-α
production at 4 h (IC50 = 13 and 18 nM, respectively) and 24 h
(100 and 72 nM, respectively), which was consistent with 4
(DCB-3503) (20 and 97 nM at 4 and 24 h, respectively).
Among 14-hydroxytylophorine compounds (4−7), 4 and 6
showed greater inhibition (IC50 = 20 and 133 nM, respectively)
than 5 and 7 (370 and 610 nM, respectively), which was similar
to their effects in Raw cells. The above findings suggested that
C14-hydroxy and C13a-hydrogen were more active when they
were in the trans configuration. The similar inhibitory effects of
1, 2, 4, 9, 12, 18, 19, and 21 shown in murine splenocytes as
well as Raw cells suggested their potent anti-inflammatory
effects as TNF-α inhibitors. All the C9-substituted PBTs 24−34
did not display any inhibition effect, suggesting that the
indolizidine ring is important for the anti-TNF-α activity.

Cytotoxicity of Derivatives 1−34. Among compounds
that can promote Foxp3 expression, the IC50s of 9 and 13 were
42 and 23 nM compared with 4 (DCB-3503; 53 nM),
suggesting that the cytotoxicity of 9 and 13 was much greater
than DCB-3503. The IC50 of derivative 19 was 317 nM, which
suggested a lower cytotoxicity than 4 (DCB-3503; 53 nM). The
IC50 of PBTs 31 and 32 was about 500 μM, whereas most cells
died when they were cultured with 4 (DCB-3503) at 1 μM,
which suggested that 31 and 32 had greater capacity for
promoting Tregs differentiation.
For compounds 1, 2, 4, 9, 12, 18, 19, and 21 that can

suppress TNF-α production, the IC50 of compounds 9 and 12
were 42 and 33 nM, which indicated greater cytotoxicity than
that of DCB-3503. The IC50 of compounds 1, 2, and 21 was
261, 274, and 228 nM, respectively, and their cytotoxicity was
similar. The IC50 of 18 and 19 was 963 and 317 nM
respectively, whereas that of 4 (DCB-3503) was 53 nM (Table
3). Thus, derivatives 18 and 19 had greater potential as TNF-α

inhibitors. Inhibitory effects toward TNF-α of these derivatives
were inconsistent with their cytotoxicity, suggesting that the
inhibitory effects were not due to their cytotoxicity. Moreover,
the cytotoxicity of analogues 1−23 was greater than those of
PBTs 24−34, suggesting that the structure of PBTs could
reduce the toxicity of DCB-3503.

Table 2. TNF-α Inhibitory Activitya

IC50s in Raw 264.7 IC50s in murine splenocytes

compd 6 h 4 h 24 h

1 125 ± 6 nM 35 ± 15 nM 871 ± 10 nM
2 78 ± 12 nM 55 ± 15 nM 1134 ± 17 nM
3 430 ± 63 nM 208 ± 14 nM 1215 ± 20 nM
4 36 ± 12 nM 20 ± 14 nM 97 ± 12 nM
5 350 ± 16 nM 370 ± 15 nM 1292 ± 25 nM
6 238 ± 27 nM 133 ± 11 nM 783 ± 32 nM
7 817 ± 36 nM 610 ± 43 nM 965 ± 45 nM
8 52 ± 16 nM 300 ± 53 nM 673 ± 52 nM
9 93 ± 13 nM 118 ± 15 nM 628 ± 44 nM
10 226 ± 12 nM 100 ± 10 nM 589 ± 35 nM
11 181 ± 19 nM 319 ± 12 nM 739 ± 32 nM
12 27 ± 12 nM 30 ± 9 nM 338 ± 23 nM
13 162 ± 17 nM 242 ± 38 nM 312 ± 13 nM
14 135 ± 13 nM 213 ± 25 nM 329 ± 23 nM
15 122 ± 12 nM 226 ± 38 nM 368 ± 43 nM
16 56 ± 17 nM 252 ± 26 nM 295 ± 16 nM
17 61 ± 19 nM 223 ± 26 nM 631 ± 42 nM
18 33 ± 4 nM 13 ± 2 nM 100 ± 11 nM
19 56 ± 7 nM 18 ± 4 nM 72 ± 8 nM
20 511 ± 6 nM 760 ± 3 nM 972 ± 22 nM
21 100 ± 10 nM 76 ± 8 nM 918 ± 23 nM
22 248 ± 17 nM 215 ± 9 nM 193 ± 14 nM
23 283 ± 15 nM 210 ± 11 nM 160 ± 18 nM
24 200 ± 13 μM 234 ± 13 μM 231 ± 12 μM
25 307 ± 6 μM 265 ± 13 μM 304 ± 31 μM
26 354 ± 11 μM 292 ± 14 μM 389 ± 24 μM
27 217 ± 15 μM 211 ± 11 μM 363 ± 33 μM
28 231 ± 12 μM 265 ± 10 μM 273 ± 42 μM
29 227 ± 12 μM 301 ± 15 μM 329 ± 26 μM
30 236 ± 10 μM 251 ± 21 μM 317 ± 46 μM
31 41 ± 6 μM 38 ± 18 μM 92 ± 12 μM
32 227 ± 11 μM 115 ± 14 μM 213 ± 11 μM
33 241 ± 17 μM 156 ± 16 μM 257 ± 17 μM
34 216 ± 14 μM 153 ± 13 μM 275 ± 15 μM

aValues are the mean ± SD of at least three independent experiments
carried out in duplicate.

Table 3. Comparison of Cytotoxicity Properties of
Derivatives 1−34a

compd IC50 (nM) compd IC50 (nM) compd IC50 (uM)

1 261 ± 8 13 23 ± 7 24 418 ± 32
2 274 ± 32 14 93 ± 39 25 422 ± 42
3 823 ± 31 15 14 ± 9 26 357 ± 65
4 53 ± 39 16 13 ± 7 27 320 ± 45
5 1057 ± 44 17 167 ± 49 28 132 ± 26
6 242 ± 16 18 963 ± 32 29 116 ± 39
7 1164 ± 35 19 317 ± 25 30 305 ± 34
8 105 ± 41 20 651 ± 21 31 513 ± 33
9 42 ± 14 21 228 ± 19 32 515 ± 22
10 53 ± 14 22 175 ± 23 33 423 ± 24
11 432 ± 45 23 160 ± 15 34 469 ± 22
12 33 ± 4

aValues are the mean ± SD of at least three independent experiments
carried out in duplicate.
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Biological activity and cytotoxicity of 31 and 18. On
the basis of the preliminary screening data, we have synthesized
the PBT 31 and salt derivative of (±)-tylophorine 18 to further
investigate their activity. The promotion ratio of analogue 31
on foxp3 expression has increased along with the increased
concentration and reached 100% at 1 μM (Figure 2A).

However, the highest promoting ratio of 4 (DCB-3503) on
Foxp3 expression was approximately 40% at 100 nM, which
was probably due to its cytotoxicity at higher concentrations.
The IC50 of 31 was about 500 μM (Figure 2B) compared with
53 nM of 4 (DCB-3503), suggesting that the cytotoxicity of 31
was much lower than that of DCB-3503. Inhibition curves of 18
and 4 (DCB-3503) were similar (Figure 2C), but the cell
survival of 18 was better than that of DCB-3503 at the same
concentration (IC50 of 18 = 963 nM). Moreover, 18 could be
dissolved in water but DCB-3503 was dissolved in dimethyl
sulfoxide, suggesting that the salt analogue of DCB-3503 could
improve its efficacy by enhancing its water solubility.
The anti-inflammatory mechanism of 31 and 18 demon-

strated by our previous studies indicated that 31 may enhance
Foxp3 expression through inhibition of the AKT/mTOR
pathway and enhancement of demethylation of the promoter
region by inhibition of the ERK pathway and DNMT1
expression.27 Compound 18 acts on the stability of TNF-α
mRNA by decreasing phospho-p38, and 18 reduced differ-
entiation of Th17 cells by attenuating interleukin-6 produc-
tion28 (Figure S2, Supporting Information). Further studies are
required to explore other anti-inflammatory mechanisms and
direct targets of these tylophorine derivatives.
This is the first report to use Foxp3-GFP mice and

macrophage cells to evaluate the anti-inflammatory activity of
DCB-3503 derivatives. Among compounds that can promote
Foxp3 expression (4, 9, 13, 19, 31, and 32), the cytotoxicity of 9

and 13 should be attenuated. Compounds 4 and 19 have better
activity and cell viability. Compounds 31 and 32 show the
highest activity and cell survival, suggesting that the structure of
PBTs is important for the promotion of Foxp3 expression.
Among compounds that can suppress TNF-α (1, 2, 4, 9, 12, 18,
19, and 21), the inhibitory effect of 9 and 12 may have been
due to their cytotoxicity, whereas compounds 18 and 19
showed significant activity without cytotoxicity, suggesting that
the salt derivatives of tylophorine are more effective for the
inhibition of TNF-α. Interestingly, 4, 9, and 19 displayed both
effects on promotion of Foxp3 and suppression of TNF-α
expression, indicating their synergistic therapeutic use against
inflammatory diseases.
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